25 research outputs found

    Linear Encodings of Bounded LTL Model Checking

    Full text link
    We consider the problem of bounded model checking (BMC) for linear temporal logic (LTL). We present several efficient encodings that have size linear in the bound. Furthermore, we show how the encodings can be extended to LTL with past operators (PLTL). The generalised encoding is still of linear size, but cannot detect minimal length counterexamples. By using the virtual unrolling technique minimal length counterexamples can be captured, however, the size of the encoding is quadratic in the specification. We also extend virtual unrolling to Buchi automata, enabling them to accept minimal length counterexamples. Our BMC encodings can be made incremental in order to benefit from incremental SAT technology. With fairly small modifications the incremental encoding can be further enhanced with a termination check, allowing us to prove properties with BMC. Experiments clearly show that our new encodings improve performance of BMC considerably, particularly in the case of the incremental encoding, and that they are very competitive for finding bugs. An analysis of the liveness-to-safety transformation reveals many similarities to the BMC encodings in this paper. Using the liveness-to-safety translation with BDD-based invariant checking results in an efficient method to find shortest counterexamples that complements the BMC-based approach.Comment: Final version for Logical Methods in Computer Science CAV 2005 special issu

    Survey on Directed Model Checking

    Get PDF
    International audienceThis article surveys and gives historical accounts to the algorithmic essentials of directed model checking, a promising bug-hunting technique to mitigate the state explosion problem. In the enumeration process, successor selection is prioritized. We discuss existing guidance and methods to automatically generate them by exploiting system abstractions. We extend the algorithms to feature partial-order reduction and show how liveness problems can be adapted by lifting the search Space. For deterministic, finite domains we instantiate the algorithms to directed symbolic, external and distributed search. For real-time domains we discuss the adaption of the algorithms to timed automata and for probabilistic domains we show the application to counterexample generation. Last but not least, we explain how directed model checking helps to accelerate finding solutions to scheduling problems

    Ferrocenyl-coupled n-heterocyclic carbene complexes of gold(i): a successful approach to multinuclear anticancer drugs

    Get PDF
    Four gold(I) carbene complexes featuring 4-ferrocenyl substituted imidazol-2-ylidene ligands were investigated for antiproliferative and antivascular properties. They were active against a panel of seven cancer cell lines, including multidrug-resistant ones, with low micromolar or nanomolar IC50 (72 h) values, according to their lipophilicity and cellular uptake. The delocalised lipophilic cationic complexes 8 and 10 acted by increasing the reactive oxygen species in two ways: via a genuine ferrocene effect and by inhibiting the thioredoxin reductase. Both complexes gave rise to a reorganization of the F-actin cytoskeleton in endothelial and melanoma cells, associated with a G1 phase cell cycle arrest and a retarded cell migration. They proved antiangiogenic in tube formation assays with endothelial cells and vascular-disruptive on real blood vessels in the chorioallantoic membrane of chicken eggs. Biscarbene complex 10 was also tolerated well by mice where it led to a volume reduction of xenograft tumors by up to 80%

    A SAT-Based Encoding of the One-Pass and Tree-Shaped Tableau System for LTL

    Get PDF
    A new one-pass and tree-shaped tableau system for LTL sat- isfiability checking has been recently proposed, where each branch can be explored independently from others and, furthermore, directly cor- responds to a potential model of the formula. Despite its simplicity, it proved itself to be effective in practice. In this paper, we provide a SAT-based encoding of such a tableau system, based on the technique of bounded satisfiability checking. Starting with a single-node tableau, i.e., depth k of the tree-shaped tableau equal to zero, we proceed in an incremental fashion. At each iteration, the tableau rules are encoded in a Boolean formula, representing all branches of the tableau up to the current depth k. A typical downside of such bounded techniques is the effort needed to understand when to stop incrementing the bound, to guarantee the completeness of the procedure. In contrast, termination and completeness of the proposed algorithm is guaranteed without com- puting any upper bound to the length of candidate models, thanks to the Boolean encoding of the PRUNE rule of the original tableau system. We conclude the paper by describing a tool that implements our procedure, and comparing its performance with other state-of-the-art LTL solvers

    Handling Conflicts in Depth-First Search for LTL Tableau to Debug Compliance Based Languages

    Full text link
    Providing adequate tools to tackle the problem of inconsistent compliance rules is a critical research topic. This problem is of paramount importance to achieve automatic support for early declarative design and to support evolution of rules in contract-based or service-based systems. In this paper we investigate the problem of extracting temporal unsatisfiable cores in order to detect the inconsistent part of a specification. We extend conflict-driven SAT-solver to provide a new conflict-driven depth-first-search solver for temporal logic. We use this solver to compute LTL unsatisfiable cores without re-exploring the history of the solver.Comment: In Proceedings FLACOS 2011, arXiv:1109.239
    corecore